283 research outputs found

    A Three-Dimensional Stereotaxic MRI Brain Atlas of the Cichlid Fish Oreochromis mossambicus

    Get PDF
    The African cichlid Oreochromis mossambicus (Mozambique tilapia) has been used as a model system in a wide range of behavioural and neurobiological studies. The increasing number of genetic tools available for this species, together with the emerging interest in its use for neurobiological studies, increased the need for an accurate hodological mapping of the tilapia brain to supplement the available histological data. The goal of our study was to elaborate a three-dimensional, high-resolution digital atlas using magnetic resonance imaging, supported by Nissl staining. Resulting images were viewed and analysed in all orientations (transverse, sagittal, and horizontal) and manually labelled to reveal structures in the olfactory bulb, telencephalon, diencephalon, optic tectum, and cerebellum. This high resolution tilapia brain atlas is expected to become a very useful tool for neuroscientists using this fish model and will certainly expand their use in future studies regarding the central nervous system.Fundação para a Ciência e a Tecnologia grant: (PTDC/PSI/71811/2006); FCT PhD fellowships: (SFRH/BD/40976/2007, SFRH/BD/44848/2008); Plurianual Programme R&D: (unit MAR-LVT-Lisboa-331)

    DELTA-MRI: Direct deformation Estimation from LongiTudinally Acquired k-space data

    Full text link
    Longitudinal MRI is an important diagnostic imaging tool for evaluating the effects of treatment and monitoring disease progression. However, MRI, and particularly longitudinal MRI, is known to be time consuming. To accelerate imaging, compressed sensing (CS) theory has been applied to exploit sparsity, both on single image as on image sequence level. State-of-the-art CS methods however, are generally focused on image reconstruction, and consider analysis (e.g., alignment, change detection) as a post-processing step. In this study, we propose DELTA-MRI, a novel framework to estimate longitudinal image changes {\it directly} from a reference image and subsequently acquired, strongly sub-sampled MRI k-space data. In contrast to state-of-the-art longitudinal CS based imaging, our method avoids the conventional multi-step process of image reconstruction of subsequent images, image alignment, and deformation vector field computation. Instead, the set of follow-up images, along with motion and deformation vector fields that describe their relation to the reference image, are estimated in one go. Experiments show that DELTA-MRI performs significantly better than the state-of-the-art in terms of the normalized reconstruction error.Comment: 5 pages, 4 figures, Submitted to ISBI 202

    Progressive tau aggregation does not alter functional brain network connectivity in seeded hTau.P301L mice

    Get PDF
    Progressive accumulation of hyperphosphorylated tau is a hallmark of various neurodegenerative disorders including Alzheimer's disease. However, to date, the functional effects of tau pathology on brain network connectivity remain poorly understood. To directly interrogate the impact of tau pathology on functional brain connectivity, we conducted a longitudinal experiment in which we monitored a fibril-seeded hTau.P301L mouse model using correlative whole-brain microscopy and resting-state functional MRI. Despite a progressive aggravation of tau pathology across the brain, the major resting-state networks appeared unaffected up to 15 weeks after seeding. Targeted analyses also showed that the connectivity of regions with high levels of hyperphosphorylated tau was comparable to that observed in controls. In line with the ostensible retention of connectivity, no behavioural changes were detected between seeded and control hTau.P301L mice as determined by three different paradigms. Our data indicate that seeded tau pathology, with accumulation of tau aggregates throughout different regions of the brain, does not alter functional connectivity or behaviour in this mouse model. Additional correlative functional studies on different mouse models should help determine whether this is a generalizable trait of tauopathies

    Noninvasive Relative Quantification of [11C]ABP688 PET Imaging in Mice Versus an Input Function Measured Over an Arteriovenous Shunt

    Get PDF
    Impairment of the metabotropic glutamate receptor 5 (mGluR5) has been implicated with various neurologic disorders. Although mGluR5 density can be quantified with the PET radiotracer [11C]ABP688, the methods for reproducible quantification of [11C]ABP688 PET imaging in mice have not been thoroughly investigated yet. Thus, this study aimed to assess and validate cerebellum as reference region for simplified reference tissue model (SRTM), investigate the feasibility of a noninvasive cardiac image-derived input function (IDIF) for relative quantification, to validate the use of a PET template instead of an MRI template for spatial normalization, and to determine the reproducibility and within-subject variability of [11C]ABP688 PET imaging in mice. Blocking with the mGluR5 antagonist MPEP resulted in a reduction of [11C]ABP688 binding of 41% in striatum (p < 0.0001), while no significant effect could be found in cerebellum (−4.8%, p > 0.99) indicating cerebellum as suitable reference region for mice. DVR-1 calculated using a noninvasive IDIF and an arteriovenous input function correlated significantly when considering the cerebellum as the reference region (striatum: DVR-1, r = 0.978, p < 0.0001). Additionally, strong correlations between binding potential calculated from SRTM (BPND) with DVR-1 based on IDIF (striatum: r = 0.980, p < 0.0001) and AV shunt (striatum: r = 0.987, p < 0.0001). BPND displayed higher discrimination power than VT values in determining differences between wild-types and heterozygous Q175 mice, an animal model of Huntington's disease. Furthermore, we showed high agreement between PET- and MRI-based spatial normalization approaches (striatum: r = 0.989, p < 0.0001). Finally, both spatial normalization approaches did not reveal any significant bias between test-retest scans, with a relative difference below 5%. This study indicates that noninvasive quantification of [11C]ABP688 PET imaging is reproducible and cerebellum can be used as reference region in mice

    Own Song Selectivity in the Songbird Auditory Pathway: Suppression by Norepinephrine

    Get PDF
    Like human speech, birdsong is a learned behavior that supports species and individual recognition. Norepinephrine is a catecholamine suspected to play a role in song learning. The goal of this study was to investigate the role of norepinephrine in bird's own song selectivity, a property thought to be important for auditory feedback processes required for song learning and maintenance.Using functional magnetic resonance imaging, we show that injection of DSP-4, a specific noradrenergic toxin, unmasks own song selectivity in the dorsal part of NCM, a secondary auditory region.The level of norepinephrine throughout the telencephalon is known to be high in alert birds and low in sleeping birds. Our results suggest that norepinephrine activity can be further decreased, giving rise to a strong own song selective signal in dorsal NCM. This latent own song selective signal, which is only revealed under conditions of very low noradrenergic activity, might play a role in the auditory feedback and/or the integration of this feedback with the motor circuitry for vocal learning and maintenance

    Functional MRI of Auditory Responses in the Zebra Finch Forebrain Reveals a Hierarchical Organisation Based on Signal Strength but Not Selectivity

    Get PDF
    BACKGROUND: Male songbirds learn their songs from an adult tutor when they are young. A network of brain nuclei known as the 'song system' is the likely neural substrate for sensorimotor learning and production of song, but the neural networks involved in processing the auditory feedback signals necessary for song learning and maintenance remain unknown. Determining which regions show preferential responsiveness to the bird's own song (BOS) is of great importance because neurons sensitive to self-generated vocalisations could mediate this auditory feedback process. Neurons in the song nuclei and in a secondary auditory area, the caudal medial mesopallium (CMM), show selective responses to the BOS. The aim of the present study is to investigate the emergence of BOS selectivity within the network of primary auditory sub-regions in the avian pallium. METHODS AND FINDINGS: Using blood oxygen level-dependent (BOLD) fMRI, we investigated neural responsiveness to natural and manipulated self-generated vocalisations and compared the selectivity for BOS and conspecific song in different sub-regions of the thalamo-recipient area Field L. Zebra finch males were exposed to conspecific song, BOS and to synthetic variations on BOS that differed in spectro-temporal and/or modulation phase structure. We found significant differences in the strength of BOLD responses between regions L2a, L2b and CMM, but no inter-stimuli differences within regions. In particular, we have shown that the overall signal strength to song and synthetic variations thereof was different within two sub-regions of Field L2: zone L2a was significantly more activated compared to the adjacent sub-region L2b. CONCLUSIONS: Based on our results we suggest that unlike nuclei in the song system, sub-regions in the primary auditory pallium do not show selectivity for the BOS, but appear to show different levels of activity with exposure to any sound according to their place in the auditory processing stream

    Functional Connectivity fMRI of the Rodent Brain: Comparison of Functional Connectivity Networks in Rat and Mouse

    Get PDF
    At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats

    Recommendations and guidelines from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 1 -- In vivo small-animal imaging

    Full text link
    The value of in vivo preclinical diffusion MRI (dMRI) is substantial. Small-animal dMRI has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. Many of the influential works in this field were first performed in small animals or ex vivo samples. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the data. This work aims to serve as a reference, presenting selected recommendations and guidelines from the diffusion community, on best practices for preclinical dMRI of in vivo animals. In each section, we also highlight areas for which no guidelines exist (and why), and where future work should focus. We first describe the value that small animal imaging adds to the field of dMRI, followed by general considerations and foundational knowledge that must be considered when designing experiments. We briefly describe differences in animal species and disease models and discuss how they are appropriate for different studies. We then give guidelines for in vivo acquisition protocols, including decisions on hardware, animal preparation, imaging sequences and data processing, including pre-processing, model-fitting, and tractography. Finally, we provide an online resource which lists publicly available preclinical dMRI datasets and software packages, to promote responsible and reproducible research. An overarching goal herein is to enhance the rigor and reproducibility of small animal dMRI acquisitions and analyses, and thereby advance biomedical knowledge.Comment: 69 pages, 6 figures, 1 tabl

    Own-song recognition in the songbird auditory pathway: selectivity and lateralization.

    Full text link
    The songbird brain is able to discriminate between the bird's own song and other conspecific songs. Determining where in the brain own- song selectivity emerges is of great importance because experience-dependent mechanisms are necessarily involved and because brain regions sensitive to self-generated vocalizations could mediate auditory feedback that is necessary for song learning and maintenance. Using functional MRI, here we show that this selectivity is present at the midbrain level. Surprisingly, the selectivity was found to be lateralized toward the right side, a finding reminiscent of the potential right lateralization of song production in zebra finches but also of own-face and own-voice recognition in human beings. These results indicate that a midbrain structure can process subtle information about the identity of a subject through experience-dependent mechanisms, challenging the classical perception of subcortical regions as primitive and nonplastic structures. They also open questions about the evolution of the cognitive skills and lateralization in vertebrates
    • …
    corecore